4
VITRUVEO

Create Freely.
Earn Fearlessly

Whitepaper

V 1.01
25th December 2023

The material provided herein is for informational purposes only. It does not constitute
an offer to sell or a solicitation of an offer to buy any interests in any other securities.
Certain statements herein may constitute forward-looking statements. When used

n u n u n u n u

herein, the words “may,” “will,” “should,” “project,” “anticipate,” “believe,” “estimate,’
“intend,” “expect,” “continue,’ and similar expressions or the negatives thereof are
generally intended to identify forward-looking statements. Such forward-looking
statements, including the intended actions and performance objectives of Vitruveo
involve known and unknown risks, uncertainties, and other important factors that could
cause the actual results, performance, or achievements of Vitruveo in its development
of the system, network, its components, and the tokens to differ materially from any
future results, performance, or achievements expressed or implied by such
forward-looking statements. No representation or warranty is made as to future
performance or such forward-looking statements. All forward-looking statements herein
speak only as of the date hereof. Vitruveo expressly disclaims any obligation or
undertaking to disseminate any updates or revisions to any forward-looking statement
contained herein to reflect any change in its expectation with regard thereto or any
change in events, conditions, or circumstances on which any such statement is based.
You are not to construe this whitepaper as investment, legal, tax, regulatory, financial,
accounting or other advice, and this whitepaper is not intended to provide the basis for
any evaluation of an investment in an interest. The information provided in this
document is for general informational purposes only. It does not constitute, and should
not be considered, a formal offer to sell or a solicitation of an offer to buy any security in
any jurisdiction, legal advice, investment advice, or tax advice. If you are in need of legal
advice, investment advice or tax advice, please consult with a professional adviser. The
Vitruveo protocol is under development and is subject to change. As such, the protocol
documentation and contents of its website may not reflect the current state of the
protocol at any given time. The protocol documentation, document, and website content
are not final and are subject to change.

VITRUVEO

Blockchain for Creators

Vitruveo is a Blockchain for Creators. It uses an EVM-based protocol as the foundation
for building a decentralized ecosystem to unlock sustainable income for Creators based
on trust, technology and community. We're starting with Creators in the visual art
domain, then music, gaming, film and other domains.

The global art market is approximately $68 billion, but only around $11 billion is
represented in art-centric NFTs. This is because the current general purpose NFT
standards are not very attractive to traditional artists, galleries, art collectors and
museums. Also, with the current model Creators have to mint an NFT, then know
marketing, sales and social media in order to find buyers.

With Vitruveo, we're building a Vertically Integrated Ecosystem for Creators which
focuses on onboarding millions of artists and professional art organizations to Web3 by
building trust through Creator KYC, adhering to art metadata standards like LinkedArt,
cryptographically signing art media, conforming to established license standards like
Creative Commons, and helping Creators beyond just the technology with marketing
and social media promotion. We're making Web3 more accessible to the art community

by creating custodial wallets, onboarding workshops, in-person hubs for artists to visit,
experience digital art, learn and signup.

Overall, our solution is about making it possible for Creators to have a sustainable

income through their art. We are doing this with a blockchain at the foundation and
everything in the stack above to focus exclusively on Creators.

Problems

Creators in Web3 today are faced with four primary challenges:

1. Income: Due to its evolving nature, Web3 isn't currently well-suited for Creators to
earn a full-time income. Sales vary significantly based on the overall crypto
market performance and there aren’t very many buyers. Furthermore, activity is
fragmented across protocols and marketplaces on those platforms making it
more challenging. But even in the Web2 world, Creators face similar challenges.
Gate-keeping by galleries is a real problem for Creators which is why many of
them are starting to look to Web3 in the first place.

2. Skills: Existing NFT marketplaces are built on a “Do It Yourself” model. Creators
need to learn how to use the technology, list their artworks for sale and then
teach themselves how to promote themselves and their work. Artists are forced
to learn marketing, sales and social media skills when they would rather be
creating art.

3. Bad Actors: The complete absence of standard for NFT art has resulted in chaos.
NFT marketplaces are like street bazaars with every genre, style, quality and size
of artwork thrown together with non-existent metadata for searchability and
organization. With no checks for quality or authenticity, fake artworks and
scammers have a field day, discouraging many artists and art organizations from
entering Web3.

4. User Experience: The overall user experience of Web3 continues to be an
impediment to large scale adoption. Users have to learn a mind-boggling amount
of technology jargon and work with complex software apps and concepts in
order to get even basic tasks accomplished. This means only the most
determined and patient artists even reach the point where they can list their work
on a Web3 marketplace.

Creator Journey

Choose Edition and Price Upload Artwork

Connect with Collectors

NEW!!

The Creators who have gained the most traction in Web3 are artists. While Vitruveo is
designed to address the needs of all Creators, our initial focus is on artists and the Art
industry, which is what we'll focus on for the rest of this document.

Artists who are in Web3 today are primarily finding success on Ethereum, Tezos and
Solana, with limited traction on Binance Smart Chain and Polygon. None of these
protocols have anything specific for Creators. All the capabilities are provided by
third-party marketplaces each with their own brand, features, benefits, policies, Artists
and collector audience.

The journey for Artists is daunting and involves making a commitment with imprecise
information. Artists need to choose a protocol, then a marketplace on that protocol,
abide by all the policies of that marketplace, figure out whether to list their artwork as a
single or multiple edition, determine the price point, pay for minting without any
guarantee of sale, and that'’s just the beginning. Then comes the endless cycle of
promotion — daily X and Instagram posts, waiting on X Spaces for hours and hours to
be able to speak for 2-3 minutes — and all of it may be in vain. Many Artists don't see a
single sale for many months, while a small segment of 2-3% see recurring sales.

Vertically Integrated Ecosytem

Marketing

Community

Workshops
elements Tools & Resources

protocols % Marketplace

Dapps

Smart Contracts

Blockchain

Vitruveo is solving all these problems with a Vertically Integrated Ecosystem.
Borrowing a page from Apple’s playbook, we are starting with the technology foundation
of a blockchain but taking it all the way up the stack with Smart Contracts, Dapps,
Marketplace, Tools and Resources, Workshops, Community Engagement and Marketing.

By creating a one-stop shop for Creators, Vitruveo will not only attract all stakeholders in
the art ecosystem, but the ready audience will also attract developers and third-party
service providers to build and provide services on the platform. Additionally, we can
concentrate our marketing and community outreach resources in a very targeted
manner.

Today, when you think of eCommerce, the first company that comes to mind is Amazon.

In the future, when you think of Web3 Creator Ecosystem, Vitruveo will be the first
mention.

Market Analysis

The Art market is large — over $68 billion. Of this market, 84% remains outside Web3.
This is Vitruveo’s market opportunity. By creating a blockchain-based economy for

Creators, focusing on a great user experience, adhering to industry standards and
focusing on trustworthiness, Vitruveo can onboard a large portion of this 84% onto
Web3. We can learn from and optimize our marketing, outreach, onboarding workflows
to then rapidly onboard music, gaming, film and other domains which also have very
large footprints.

Competition

One of the biggest advantages that Vitruveo will have over other protocols is our focus
on Creators. Other blockchains have individual marketplaces that each provide a
different feature set, different user experience, and have different policies for Creators.
On Vitruveo, since the asset registry is at the protocol level, all apps and marketplaces
will have a uniform set of standards and can be more focused on marketing, discovery
and attracting buyers.

Technical Overview

Vitruveo is an L1 blockchain that is 100% Ethereum Virtual Machine (EVM) compatible.
It uses a Proof of Authority consensus mechanism with a 500 Validator network. The
protocol uses GoEthereum, the same software used on the Ethereum blockchain with
the following modifications:

Rebasing

Vitruveo is the world'’s first rebasing protocol. Every other protocol with rebasing to-date
implemented it using a Smart Contract. With Vitruveo, the core protocol has rebasing or
built-in.

Zero :
KYC Standard

performance Commons
based compound
interest of coins C2PA

In simpler terms rebasing is “compound interest.” However, without any damping
mechanism, rebasing would result in an inflationary cryptocurrency. Vitruveo solves this
by coupling rebases to epoch-based transaction volume.

On Vitruveo, the block time is 5 seconds. Each epoch is 17,280 blocks which is 24
hours. At Genesis, the epoch transaction goal is set to 10,000. If this goal is achieved
within the epoch with a +/-25% variability, then all SVTRU (the native coin), regardless of
whether it is in a Smart Contract or an Externally Owned Account, increases by

1.00087671 (with +/-25% variability). Each epoch the transaction goal increases by 500,
ensuring that the ecosystem has to continually perform well in order to earn the rebase.
The rebasing mechanism stops when the circulating supply reaches 250 million.

The rebasing feature is built into the protocol and is highly performant. Users with
wallets such as MetaMask will see their balance automatically increase in real-time
when a rebase occurs. Since rebasing is expected to work only for the first 5-7 years, we
call it “Early Adopter Rewards” as it provides passive income to all SVTRU holders.

Creator Base

Vitruveo has protocol-level support for TrulD, Vitruveo's solution for validating the true
identity of Creators. This is our W3C Verifiable Credentials compatible ID for Creators.
TrulD has zk-KYC (“Zero Knowledge Know Your Creator”). Third-party providers perform
KYC and return the KYC level of a creator, ensuring their privacy.

TrulD verification is paid for by Vitruveo and has multiple levels. L1 is required, other
levels are optional:

L1: Email (1 Creator Credit) - required

L2: Phone (+2 Creator Credits) — optional

L3: Proof of Address (+3 Creator Credits) — optional
L4: Liveness (+4 Creator Credits) — optional

L5: ID Document (+5 Creator Credits) — optional

Feature availability on Vitruveo and third-party apps is linked to TrulD levels — higher
TrulD levels mean more freedom and benefits. Additionally, higher TrulD levels also
mean more “Creator Credits” which are required for registering assets into AssetBase
(described in next section).

Issuer

Issues VCs

- g:
H,OIder Send Presentation Ve,'."f'er
Acquires, stores, Verifies VCs
presents VCs

Issue Credentials

—

Verify |dentifiers
and use Schemas

Register |dentifiers Verify Identifiers
and use Schemas and Schemas

[Verifiable Data Registry

Maintains identifiers and schemas] <

10

https://www.w3.org/TR/vc-data-model/

Asset Base

Vitruveo has protocol-level support for Creators to consign their assets. This ensures
that consigned assets are available to every dapp on the platform and Creators do not
need to individually upload to different dapps or marketplaces.

LinkedArt Artwork

Metadata <

Creators _

! !

CreatorBase AssetBase

One of the most unique and innovative features of Asset Base is standards-compliance.
Assets registered with Asset Base conform to three standards:

1) MetaData Standard: Vitruveo requires assets to conform to industry standard
metadata requirements. In the case of visual art, the standard is LinkedArt which is
used by top museums around the world. For music, the standard is Media Enrichment
and Description (MEAD).

2) License Standard: Vitruveo tokenizes licenses and requires them to conform to
Creative Commons, the same standard used by YouTube and other major organizations.
There are different License Types (NFT, Streaming, Print on Demand) giving Creators
significant flexibility in licensing their artworks for different use cases.

3) Signing Standard: Vitruveo requires Creators to digitally sign their artworks using the

Coalition for Content Provenance and Authenticity (C2PA) standard. This makes it
harder for copycats and also provides a mechanism for Creators to affirm their

authenticity of their work.

11

https://linked.art/model/
https://kb.ddex.net/implementing-each-standard/media-enrichment-and-description-(mead)/#:~:text=MEAD%20provides%20for%20the%20communication,sound%20recordings%2C%20and%20musical%20works.
https://kb.ddex.net/implementing-each-standard/media-enrichment-and-description-(mead)/#:~:text=MEAD%20provides%20for%20the%20communication,sound%20recordings%2C%20and%20musical%20works.
https://creativecommons.org/
https://c2pa.org/

Creator Support

Creator Benefits

Everything about Vitruveo is designed to benefit Creators.

Creator Income

Unlike existing Web3 scenarios where Creators only have one form of income — NFT
Sales, Vitruveo changes the dynamic significantly by unlocking new and innovative
forms of Creator Income. This is possible through our unique Licensing Architecture
that enables Creators to License the same asset for different use cases without
requiring an on-chain token to minted for every scenario.

The basic concept behind the software industry's model for wealth creation is to build
something once and then sell it in unlimited quantities with little or no additional cost.

You can't do this with tangible products because there is the cost of manufacturing,
shipping etc. You can't do this with human-delivered services because there is the cost

12

of employing people and the time/labor involved in delivering the service. How can we
apply this learning to Web3 art?

We want art to maintain its scarcity, hence the concept of NFT editions. But it isn't
possible to scale this up infinitely because it is like the latter — a human-delivered
service.

So how does the art industry create a similar model to the software industry for income
generation and dare we hope — wealth creation?

For the solution, you have to look beyond Asset Tokenization, which is the basis of NFT
1.0. Instead, you have to bring into the picture License Tokenization, which | call NFT
2.0.

You can continue to have Asset Tokenization, but with License Tokenization, you have
the ability to scale art to infinite quantities exactly like software.

License Tokenization is fundamental to Vitruveo because we want to enable wealth
creation for artists. It is also standards compliant with Creative Commons because
standards mean easier comprehension, adoption and scalability.

Let's look at the types of Licenses you can tokenize with Vitruveo:
NFT: This is your standard edition license. Except you don't have to think about whether
to make it a 1/1 or 1/n. You can always make it a 1/n where "n" can be 1 or more. You

check a box “Elastic Editions" and the Buyer decides for you.

For example, you create a license for 1/10 at an edition price of $10. If “Elastic Editions"
is checked, a Buyer can pay $100 and make it 1/1.

Another example, with the same pricing and edition size. Two people buy so it's at 2/10.
A Buyer can come along, pay $80 and make it a 3/3.

The Edition size maximum is set by the Artist, but with “Elastic Editions," the Buyer can
choose the Edition size minimum.

Print: This is a license designed for consumers or consumer product manufacturers. No

NFT is created. You license your art to be printed anywhere for a fee and a volume
discount.

13

For example, you can set the unit price at $2 and volume discount of 1% per 1000 units
with 50% discount maximum. If someone manufacturing scarves wants to use your
artwork for 10000 units, they would pay ($2 x 10000) - 10% = $20000 - $2000 = $18000

But no manufacturer is going to magically find your art and use it for production at
scale. This is where VTRU Gallery (see Appendix) comes in. We will enable Curators to
become Distributors by making it easy for them to create microsites — Galleries — with
curated artworks that have Print Licenses and offer them to consumer goods
manufacturers. This is the secret sauce — we enable Curators to make money while
promoting your art by creating Galleries

Stream: More and more digital frames purpose-built to display artworks continue to
enter the market. OTT (Over the Top) devices like AppleTV have the ability to display art
as screensavers. With VTRU Stream, Vitruveo Creators can have their work licensed and
streamed to homes, businesses, hotel lobbies, airports, train stations and hundreds of
other locations. This “Spotify for Art” service will enable passive revenue generation for
many Creators.

PAY $VTRU
o v G VTRU Store, Marketplaces,
+App Fee VTRU Galleries,
+ Protocol 2% Fee
VTRU Streams, Exhibitions

- TRANSFER
License A APP FEE
Editions: 1/10
Asset1 Price: 150

CCBY-SA
MINT NFT

Asset 2 2% FEE

100% PAYMENT

Asset ...
Treasury
Smart Contract

14

Vitruveo's go-to-market strategy is to pursue Creators domains in the following order:
Visual Arts, Music, Gaming, Film, then all other.

Creators

Our approach to onboarding Creators in Visual Arts is to first connect with and engage
Creators already in Web3 directly and through arts communities through token
incentives and giveaways. Next, we'll have outreach to Art Organizations such as
galleries and museums to batch onboard their Creators with token incentives. Finally,
we will partner with social impact organizations to onboard indigenous artist
communities and underprivileged artists around the world.

Buyers

In order to get sales of artworks, we must onboard buyers and collectors to Vitruveo.
Here’s our plan.

Art Influencers: Outreach via publications, blogs, YouTubers, Instagrammers etc.
Galleries: When we onboard Galleries, we'll onboard their collectors as well.
Exhibitions: We'll host online and offline exhibitions to connect with collectors.
Retail Partners: Retail partners with personalized art goods will bring new
collectors.

e VTRU Hubs: VTRU Hubs in major cities will be community hubs and attract both
Creators and Collectors. We'll model these like Apple Stores.

Vitruveo has a vibrant community of 10K+ users combined on social media. We are
organized as a DAO with five councils: Strategy, Technology, Creator, Ecosystem and
Marketing.

Our Governance Charter describes the DAO in detail.

15

https://vtru.xyz/charter

Advisary Graup

Marketing
Council

Tokenomics

Daily Rebase
if target
Transaction
volume is

achieved

The initial circulating supply of SVTRU is 60 million. Of these, 40 million are locked or
vesting for the first 6 months. With rebasing, the coin is expected to grow 4X over a
period of 5-7 years with a maximum supply of 250 million.

16

$VTRU Distribution

Investors
30.8%

DAO Operations
5.0%

Promotions/Perks

24.2%

17

Seed Investors

20.0%

Grants

4.2%

Partnerships

8.3%

Team

7.5%

Trust

Transparency Tradability

Security Reusability

Uniformity

We are architecting Vitruveo from the ground up to be the very best Blockchain for
Creators. Over the past two years | have spoken to thousands of artists, collected
thousands of artworks, hosted many exhibitions both virtual and irl, and studied every
aspect of the Web3 art ecosystem: marketplaces, contracts, royalties, wallets, licenses,
Uls ... all of it.

There are many things that work, but there are many more that are broken. The biggest
problem we have to fix if we want to get more artists and art appreciators in the space is
TRUST.

Web3 has all the technology elements for trustlessness, but ironically, these very
elements have thwarted the growth of Web3 art by letting scammers, copycats and
fraudsters run amok. The fix for this is to dial the decentralization back a little and add
controlled centralized elements by conforming to current industry standards that are
trusted by many, especially professionals in the art industry. My vision for Vitruveo
blockchain is to build the most trusted blockchain for creators in existence.

I think of all the key features of the blockchain as circles that work harmoniously to create
a single Circle of TRUST that becomes the foundation of everything we do in our vertically

integrated ecosystem.

Vitruveo — it's all about TRUST!

18

Appendix — Platform Dapps

In keeping with our goal of being a Vertically Integrated Ecosystem for Creators,
Vitruveo will build and maintain best of class decentralized applications needed for
Creators to be successful and to make a sustainable income.

The following pages describe the main Dapps currently envisioned. Through grants,

partnerships and strategic acquisitions we will also encourage other Creator-centric
dapps to build and launch on Vitruveo.

19

VTRU Suite

ECOSYSTEM

VTRU Streams

VTRU

Galleries | Web l | Frames |

| Devices ‘ | Apps |

VTRU Suite is a set of dapps designed to increase distribution, discoverability and sales
of artworks.

e VTRU Studio: Anyone can consign an artwork (visual art, music, film, poem etc.)
with standards-based metadata and licensing terms

e VTRU Store: Our reference marketplace. We will encourage other marketplaces
on Vitruveo. Marketplaces will need to use Asset Base (versus having Creators

mint on their platform).

e VTRU Gallery: Anyone can create a store to sell artworks consigned to Vitruveo
through VTRU Studio “Shopify for Creators”

e VTRU Stream: Anyone can build apps to stream licensed visual artworks to any
streaming device like AppleTV etc. “Spotify for Creators”

e VTRU Things: Partner with Print on Demand services to feed artworks for
personalized goods.

20

POET is a Vitruveo app designed to enable any form of engagement to be tokenized. For
example, attendees at an event, students who took a course, people who voted etc.

POET is free to use and only requires an email address thus making it very easy for
Web2 users to discover and connect with Web3 platforms and apps.

Issuer Account

v

Workshop1

"v(’ Issuer 3¢ Owned by

'~

Workshop 1 Desc

Transfer Unlock Content

Vitruveo Tech POET 2024 Virtual 6850e...115

21

PhotoKey is a secure, visual and user-friendly authentication solution for modern
desktop and mobile web browsers. It combines a photo with a sequence of 4-9 emojis
called an “EmojiKey” to authenticate a user to any Web 2.0 or Web 3.0 application using
the Openld Connect standard.

If you happen to mention to a person with knowledge of digital photo formats that you
are using photos for security, chances are good that they'll make a reference to
“steganography,’ the technique of hiding secret data within an ordinary, non-secret, file
or message in order to avoid detection. In modern digital steganography, data is first
encrypted or obfuscated in some other way and then inserted, using a special algorithm,
into data that is part of a particular file format such as a JPEG image. The secret data is
then extracted at its destination and transformed back to its unencrypted state,
revealing the original data.

PhotoKey does not use steganography. This is an important assertion to make at the
onset because steganography is fairly easy to break with today’s computers and is a
poor choice for use in an authentication system.

With that out of the way, let’s take a look at some background information and then
review the technical underpinnings of PhotoKey.

Why is PhotoKey needed?

“Necessity is the mother of invention,” the oft-used proverb states, and never has this
been truer than in the case of PhotoKey. It was born out of frustration from enduring the
rough user experiences foisted on people by many blockchain “wallets.” There are four
significant problems with these solutions:

1. The term “wallet.” Since blockchain wallets are typically just a storage list of
addresses with obscured private keys and don't contain any funds as a real-life
wallet does, the term is very confusing to new users. With no guidance, they
continue to believe that their wallets are a store of value which results in much
confusion as their blockchain usage increases.

22

https://en.wikipedia.org/wiki/OpenID_Connect
https://en.wikipedia.org/wiki/JPEG

2. Conflation of concerns. Most blockchain wallets have a mechanism through
which the user can prove they are the rightful owners of the private keys
contained within (“authentication”). In addition, they provide functionality for
sending cryptocurrency to other accounts (“payments”), signing transactions and
reporting the cryptocurrency balance and transaction history. The problem is that
this is a rather one-sided approach to the future of the decentralized web — it
presumes that all blockchain apps will require cryptocurrency. A Web2.0 analogy
would be a “Sign in with Google” button that insisted on foisting “Google Wallet”
on you every time you tried to sign in.

3. One user, many blockchains. Blockchains are nascent and as such applications
that incorporate this technology make liberal mention of it in the user interface.
For each separate blockchain app a user interacts with, they need to download
and install a different wallet. In the near future, when the vision of the
decentralized web has been realized and blockchains are a commoditized
back-end technology, will users continue to tolerate the requirement to have a
different wallet for each blockchain?

4. Private keys. Passwords. Mnemonic Passphrases. It was bad enough that users
had to remember so many different usernames and passwords on Web2.0
websites. Then blockchain and cryptocurrencies came along and users now have
to save and keep track of many private keys, passwords and mnemonic
passphrases. The situation is absurd! No wonder mainstream users are not
signing up for blockchain apps in droves.

A solution to these problems would need to have the following characteristics:

e Not a wallet.
“Authenticate” a user by securely granting them access to their private key
without going through an alternate password-based store or gatekeeper.

e Work across all websites and blockchains, current and future.
Not require the user to memorize (or even encounter) words such as “private key,”

“‘mnemonic,” “keystore” and other jargon.
e Extremely secure.

And a few more nice-to-have characteristics:

e Fully decentralized
e Fully client-side

23

e No download or installation required
e VERY SIMPLE USER EXPERIENCE

Implementing these characteristics in a software product resulted in PhotoKey.

How does PhotoKey work?

From the user’s perspective, the PhotoKey experience is very simple — they upload any
photo, specify a sequence of emojis and download the newly created PhotoKey. From
then on, they can drag/upload the PhotoKey any time they see a PhotoKey login dialog.
Once used on a device, the PhotoKey is cached so the user doesn’t need to upload it
again.

User uploads their photo User creates EmojiKey by choosing
emojis at each of nine positions in
sequence.

When the user first uploads a photo, PhotoKey checks to see if it is a JPEG image. If it
is, it then examines the photo’'s embedded XMP packet to determine if the image is a

24

https://en.wikipedia.org/wiki/Extensible_Metadata_Platform

PhotoKey. If the image has been previously processed it will contain an XMP packet
using the http://ns.photokey.org/xmp/1.0/ hamespace.

3352 FO15 6272
7A82 8384 8586
E7E8 EQEA F2F3
6E3D 2222 2069
653A 6E73 3AeD
2D72 6466 2D73
7470 3A2F 2F6E
6F62 6C6F 636B
6F74 6F62 6C6F
6636 6338 6461
3236 2220 7765
6634 6265 3533
3335 6331 3661
3037 3939 3038
2F72 6466 3A6C
4446 3E3C 2F78
800A 28A2 800A
800A 28A2 800A

D10A 1624 34E1 25F1
8788 898A 9293 9495
FAF5 F6F7 F8F9 FAFF
643D 2257 354D 304D
6574 612F 223E 3C72
796E 7461 782D 6E73
732E 6164 6F62 652E
2EGF 7267 2F78 6D7@
636B 2EGF 7267 2F78
3866 3032 3963 6439
623A 6E61 6D65 3D22
3432 3266 3266 3134
6135 3834 3564 6539
3039 3465 3131 3132
693E 3C2F 7264 663A
3A78 6D7@ 6D65 7461
28A2 800A 28A2 80G0OA
28A2 800A 28A2 800A

w 11 AQ aq "2. B.... #3R. br.

&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz
............ I N

http://ns.adobe.com/xap/1.0/ <?xpacket begi
pCehiHzreSzNTczkc9d" ?><x:xmpmeta xmlns:x="adobe:ns:meta/"><r
df :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns
#"><rdf :Description rdf:about="" xmlns:xmp="http://ns.adobe.
com/xap/1.0/" xmlns:photoblock="http://ns.photoblock.org/xmp
/1.0/"><photoblock:Web xmlns:web="http://ns.photoblock.org/x
mp/1.0/Web#"><rdf:Seq><rdf:1i web:username="75f6c8da8f029cd9
0543900f1da7eb384a4f7beae21c95d83ab2b148f1ab5026" web:name="
aeeb295b18324326efe70dd5f506a11146143d362e8262f4be53422f2f14
f13a" web:publicKey="7fe06342f24d8823bf4016e7735c16aa5845de9
ed3aada@4e5779402ff8297c9" web:import="69217a3079908094e1112
1d@42354a7c1f55b6482cala51elb250dfdled@eef9"></rdf: 1i></rdf:
Seqg></photoblock:Web></rdf:Description></rdf :RDF></x:xmpmeta
><?xpacket end="w"?>.. R T R (o

The data contained in the XMP packet is hashed versions of the following:

1) Userld: A deterministically generated user ID in the format {adjective}-{phonetic}.
This Userld serves as the user’s login for websites. In the future, when we enable
inbound email, the Userld will also serve as the username portion of the user’s
email address. Example: talented-osotied. The user may customize this user ID.

2) DisplayName: This is simply the Userld displayed in first name and last name
format. Example: Talented Osotied.

3) PublicKey: This is the user’s web public key for use in scenarios where the user
needs to share the key with a host for future session validation scenarios.

When a user wishes to authenticate, they start by uploading their PhotoKey and entering
their EmojiKey which is a sequence of Emojis. The Emojis used by PhotoKey are based
on Twitter's Open Source Emoji set. We currently use version 11, but will soon upgrade
to version 12.

By default, a minimum of four emojis are required, but up to nine may be entered. When
entering the Emojis, the position and sequence of Emojis is very important.

25

http://ns.photokey.org/xmp/1.0/
https://github.com/twitter/twemoji

PhotoKey gets the byte value for each
emoji in sequence, ignoring empty
positions.

1F600

1F44B

1F984
1F349

4948 4452 0000
01S0 0000 006A

4369 4343 50489
4343 2070 726F
6B48 DB48 2DAA4

PhotoKey divides photo bytes into
nine segments and extracts bytes for
each emoji position.

Once the Emojis are entered, PhotoKey divides the photo bytes into nine segments. For
each segment corresponding to an Emoji, it calculates the blake2s hash of the Emoji
bytes, the blake2s hash of the photo segment bytes and finally a combined hash. This
hash will serve as the seed for calculating the private key for each blockchain supported

by PhotoKey.

26

H1 = blake2s(*1F600", “89504E470D0A’)
H2 = blake2s("1F44B”,* 1A0A0000000D") Userld
H3 = blake2s(*1F 984", “080600000092”)

H4 = blake2s(*1F 349", “C1070700000A") Bred
Username
Seed = blake2s(H1, H2, H3, H4)
PhotoKey uses the Blake2s algorithm The seed is used to deterministically
to hash emoji bytes with photo bytes generate a Userld and Username in
for each position, and finally, produces “adjective - phonetic word” format.
an aggregate hash of the positional Their hash is compared to the hash
hashes. This is the high-entropy seed stored in the XMP (eXtensible
for keygen. Metadata Platform) photo section.
Ethereum r Private Key -
No private key or : :
Seed Bitcoin any other security Signing I Message |
information is Request : to be signed I
ever storedin I :
Hyperledger PhotoKey! e 1
If the hash matches, the same seed is The public key and account address
used to deterministically generate a arereported to the calling application.
public key and account address for The private key is only generated for
the blockchain where PhotoKey is signing requests and not available to
being used. the application.

At this point, you are probably curious about the level of entropy of the seed. Since we
didn’t have the requisite math background to calculate this accurately, very early during
the development cycle, we posted a question on the Math Stackexchange about the
number of selections possible using Combinatorics with ordering significance.

27

Home
Questions
Tags
Users

Unanswered

Ref:

Combinatorics with ordering significance

Asked 10 months ago Active 10 months ago Viewed 67 times

I am trying to write Javascript code to calculate the number of possible ways in which a user can make
selections given containers A, B, C, D, E, each with 10 items numbered 1 through 10 (each container
has the same items). I need help with the formula for making this calculation.

A B C D E

A user must select from at least 2 containers (s = 2), but can select from all of them. The order of
selection is important. For example, choices a user makes could be:

1.B,,Cs5 (s =2)

2.C5,By (s =2)

3. 49, B, C3 (s =3)

4.C3,B1, 49 (s =3)
My understanding is that the standard way to calculate the number of variants is ¢ (number of items

(I) raised to number of containers (C)), which in this case would be 10°. 1 am pretty sure this is
incorrect because it doesn't account for the order of selection.

How can I calculate the number of possible user selections for different values of "s," "I" and "¢"?

Update: To make this clearer, assume that once a user picks an item from a container it is closed and
cannot be opened. A user can select one item and only one item from each container. They MUST
select from 2 containers, but can select from more as they wish. The challenge here may not be
obvious and is what I am struggling with — because the ORDER of selection matters, there are more
possibilities than most well-known formulas will indicate.

combinatorics permutations

share cite edit delete flag edited Oct 19 '18 at 16:28 asked Oct 19 '18 at 1:32

1 Nik Kalyani
108 A5

https://math.stackexchange.com/questions/2961461/combinatorics-with-ordering-sign

ificance

Based on the responses received, we were able to calculate the Entropy Bits for four
Emojis at 56.86, which is 131 quadrillion permutations. We believe using four Emojis is
a reasonable convenience to strength ratio for consumers using their PhotoKey for
simple dapps, but will encourage them to use more Emojis to increase the Entropy Bits.

28

https://math.stackexchange.com/questions/2961461/combinatorics-with-ordering-significance
https://math.stackexchange.com/questions/2961461/combinatorics-with-ordering-significance

Squares
Emojis 2841

Choices

D AW N =

Entropy Bits
Min Max

28
36
60
128

25569
22728
19887
11364
8523
5682

27
35
59
127

Permutations

581,132,232

11,666,976,697,784
131,333,483,193,617,000
1,119,355,277,259,200,000,000
6,360,176,685,386,780,000,000,000

Strength

Very Weak
Weak
Reasonable
Strong

Very Strong

29

Entropy

29.11429123
43.39382927
56.86601239
69.92315801
82.39534112

As Creators achieve more success, their need for custom licensing contracts increases.
In the music industry, it is very common for Creators to have custom licenses that give
license holders specific rights that are further constrained by geography. Most licensing
systems in Web2 are PDF-driven and digital signatures, while used, are rarely verifiable
or used to digitally enforce licensing agreements.

UltraContract is Vitruveo's solution for bridging the two worlds. It enables the creation of
custom legal licensing agreements that are not only signed and human-readable, but
also deployed on-chain as Smart Contracts so the individual terms are consumable
on-chain and therefore enforceable through automation.

The UltraContract system for automated legal contract generation is described using
the following topics:

1. Roles: Parties involved in the transaction
2. Workflow Stages: Process steps for contract generation
3. Language Manifest: Data file format for contract generation

4. Composition: User interface for referenced document file selection and contract
generation

5. Document Generation: Digital document generation
6. Preview: User interface and digital document preview of contract
7. Contract Signing: Cryptographic signing of the contract by parties

8. Decentralized Publishing: Publishing of referenced document files and digital
document to decentralized file storage

9. Smart Contract Generation: Generation of source code of Smart Contract

10. Smart Contract Deployment: Compilation and deployment of Smart Contract to
the public blockchain

30

Roles

The primary roles in the system are “Licensor” and “Licensee.” There may be one or
more Licensors and one or more Licensees. All aspects of the system that apply to a
single entity in a role, also apply to a plurality of entities in that role. All subsequent
references to Licensor and Licensee may be interpreted as equally applicable to singular
or plural entities.

Workflow Stages

Workflow

Composition Review Signing Publishing

There are four stages for contract creation:

1. Composition — Licensor uses the UltraContract user interface and the tools it
provides to compose a legal contract and add any document files referenced in
the contract.

2. Review — Licensee reviews the contract language and document files referenced
in the contract. Licensee may comment on desired changes to any aspect of the
contract. Licensor reviews these comments, makes any necessary changes and
resubmits the contract for review to the Licensee.

3. Signing — Licensee cryptographically signs the contract.
4. Publishing — Licensor cryptographically signs the contract and publishes it.

Publishing involves storing the referenced document files and a digital,
human-readable preview of the contract to a decentralized file system, and

31

publishing a Smart Contract incorporating the contract terms to a decentralized
ledger (blockchain).

Language Manifest

The Language Manifest is a data file in which every possible section for every possible
logical permutation of the text of a legal contract is stored as a separate entity, each of
which may contain some or all of the following data items:

a.

Name - Internal, short, unique identifier for the section.
Title - Human-friendly description of the section’s legal text.
Category — Human-friendly category under which the section is grouped.

Description — Human-friendly descriptive text indicating the purpose and effect
of including the section in the legal contract.

Relative Sequence — Number indicating the order in which the section should
appear relative to other sections. This is important because without it an
automated generation of legal text that references prior or subsequent text would
not be possible to automate. In addition, the logical flow of the document could
not be automated (example: a signature block cannot appear in the middle of a
document; terms of a financial transaction cannot appear before the definition of
the financial transaction; etc.)

Optionality — True or false value that determines if the section is required or
optional.

Dependencies — List of other sections on which this section depends. This is
important because in legal language, including a clause may require additional
required or optional clauses to be included.

Fields - List of fields with name, type, title, description, validation criteria and

encryption requirements. Each field in the list represents one item of data that
will either be supplied by the user or programmatically generated.

32

i. Markup — HTML formatted legal text for this section with hints for typeface
styling, bullets, numbered lists, paragraphs and indents. A placeholder for each
defined field is embedded within the formatted text for later replacement with
user-provided or auto-generated values.

j. Preview — Properly formatted markup text may appear in a bulleted or numbered
list, or it may be indented. When the markup text for the section is displayed to
the user in isolation, HTML formatting code included in the markup will be
orphaned and impossible to display as it would in its final form. Preview markup
defines “open” and “close” markup to simulate the appearance of the markup text
for the section while the user is in the process of composing the legal contract.

k. Smart Contract Code — Section-specific blockchain Smart Contract source code
snippets with placeholders for field values. The snippets are composed into a
functional Smart Contract during the publishing process.

Composition

The process of creating a legal contract in UltraContract begins with Composition.
During this workflow step, the Licensor makes choices from sections defined in the
Manifest and composes them into a Contract. The contract sections are automatically
sorted based on the Relative Sequence values defined in the Manifest. In addition, any
dependent sections specified in the Manifest are automatically added to the Contract.

33

Composition

Manifest

| Section A - al, a2

| Section B - b1 | a1, f2 etc. represent
/ N fields in the Manifest that
X | Section C | are replaced with
Q\) user-defined values in
& | Section D - d1, d2 | the Contract.
/’ | Section E - e1 |
e | Section F - 1, f2, f3 |
@ e User Interface
Licensor ~ Note that the order of
\.\\ Contract Sections in the Contract
. is different, The Manifest
O.;, .] - orders sections for ease
{OC? Ny Section A - al=xYZ, a2=100 of human interpretation,
S The Contract orders

sections for correct legal
Section F - f1=QQQ, f2=250, f3=1/5/2021 flow and context,

Section C docurnent files in any
common format, The files

‘ contain intellectual

‘ The Licensor may add

property of relevance
within the contract,

Document Files (optional)

For each section, the Manifest may have field definitions. For each field, the Licensor
must input values of the required data type that match the validation criteria for the
field.

The Licensor may optionally add one or more document files to the contract. These
document files may be in any common file format. The files are intended to contain the
Licensor’s intellectual property that is being licensed through the contract, although this
is not a requirement. They may also just contain content referenced in the contract.

Once the Licensor has completed the Composition step, the contract is allowed to
progress to the Review step of the workflow.

Document Generation

In conformance with generally accepted norms for digital contracts, during each step of
the workflow, a properly formatted PDF document containing the exact contract
language is dynamically generated. The document includes references to any reference
documents stored on decentralized storage and once signed, it includes hashes and
signing account information (described in “Contract Signing”).

34

Preview

Preview

Contract

Lorem ipsum dolor sit amet, consectetur adiplscing elit, sed
do elusmad tempor | 250000 | incididunt ut labore et
dolore magna aligua.

S

Ut enim ad minim veniam, quis nostrud exercitation ullamco
/ laboris nisi| uyzs z0zs |utaliquip ex ea commodo
s@‘ -~ oo uat. Duis aute irure dolor in reprehenderit in
‘Q‘t‘ voluptate velit esse cillum [wa0 Main Siest, Any Cify, CA 54043
% dolore eu fugiat nulla pariatur,
Licensor /
User Interface
.
O @ \'\ Contract
.

@ ﬁoﬂ g Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
™~ do elusmod tempor 500,00 incididunt ut labore et dolore

Licensee T magna aliqua

Ut enim ad minim veniam, quis nostrud exercitation ullameo
labaris nisi July 26, 2020 ut aliquip ex ea commada
consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum 100 Main Street, Any City, CA
94043 dolore eu fugiat nulla pariatur,

Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui afficia deserunt mallit anim id est laborum.

During the Composition workflow step, the Licensor can view a preview of the contract
in the browser with full formatting such as bullets, indents, paragraphs etc. One
important characteristic of the preview is that it shows the contract sections in correct
legal order in contrast to the selection user interface which may show them in a more
human-friendly order. In addition, during Composition, the Licensor can also view a fully
formatted PDF preview of the contract.

During Review, the Licensee also has access to the browser and PDF previews.

35

Contract Signing

Signing
(<] Licensor
signs with
Hashing function Hash (DE private key Signature
Contract HTML + “Larry Licensor” a3B4ced8 a3B4c6d8 ab76c09dc2a34bc772
\
N\
N\ .
N Transaction
N
4 approve("a3B4c6ds")
(9] Licensee
O signs with
Hashing function Hash private key Signature
Contract HTML + “Lisa Licensee” d6F2a5e4 d6F2ased ed92f12¢5b20d4912
N

\ Transaction

4 approve("d6F2aSe4”)

Licensors and Licensees cryptographically sign the contract using the following
process:

a. The entire content of the contract in HTML format along with the signing party’s
name is cryptographically hashed using a secure hashing algorithm such as
SHA3-256. The algorithm may change as cryptographic techniques improve over
time. The resulting hash is a fixed-length text hash string H such that changing
even a single byte value of the contract text would yield a different hash.

b. Each signing party is in possession of a private key (PrK) and public key (PuK)
associated with their account A on a decentralized ledger (blockchain) (example:
the public Ethereum blockchain).

c. Each signing party uses their private key (PrK) to cryptographically sign the
content hash H resulting in signature S.

d. Each signing party uses their private key (Prk) to cryptographically sign a Smart
Contract transaction referencing the content hash H resulting in transaction

36

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://yos.io/2018/11/16/ethereum-signatures/

message M. This will be used during the “Publishing” step.

e. For each signing party, H, A and S are visibly added to the signing block of the
contract PDF. This information is cryptographic evidence of:
i. The content that was signed (H)
i. Theaccount (A) that signed the transaction
ii. Signature (S) of the hash that can be verified to be signed by (A)

Decentralized Publishing

Decentralized Publishing

Decentralized

File Storage
Hash
Referenced Doc 1 |— Qm29293 — Decentralized
“‘H~ Contract PDF File Storage
= Document
Hash Hash
Qm29293
Referenced Doc 2 |—— Qm34743 - . QM34743 —_ Qmg7383
Qm0B4a3
Hash _ Signature information
’(for all parties
" Content Hash + Hash
Referenced Doc3 |——= QmO08493 | Sign;l:r?:l—[Si;n?ng Aczcunt

Publishing of files related to the contract to a decentralized file storage system such as
IPFS (InterPlanetary File System) occurs in two steps.

Step 1: Any document files referenced in the contract are published to a decentralized
file storage system as soon as they are uploaded to the user interface. For each file a
unique file hash HF1, HF2 etc. are generated. A reference to each file hash is included in
the contract PDF document.

Step 2: After signing, the contract PDF document is encrypted using a secret key Sk (see

“Smart Contract Generation” for details of this key) and published to a decentralized file
storage system to create a unique file hash HP.

37

Smart Contract Generation

Smart Contract Generation

L
% Ent:,;iﬁs:im Smart Contract) Bytecode
e public key Compiler
licensorkey="ab398¢93" |——————*| 98a0c8bf39d8
. 2b398¢93 licenseeKey="f9830abd"
/ K
/ N .
/ \\ Section A

/ N\ i g o
/ \ iterns="1234 Plain-text field
\

Secret Key J,-"f \ amount="b39s%skoq" Encrypted field
/
bwif897wgha3)
\ Section B
\ /
N / " g - " ; i

\ / date="july 26, 2021 Plain-text field

y

Ay N /

\ @ entﬁﬁﬁsim _,-"' address="b39s9skoq" Encrypted field

N public key ’,-"r
A\ /
\ /
! f9830abd / Qm87383 Contract POF Hash

As described in “Language Manifest,” each contract section may have associated Smart
Contract code snippets in a language suitable for the blockchain in use for the system.
In the case of Ethereum, the language is Solidity. After the contract is signed by all
parties, the Smart Contract code snippets for individual sections are injected into a
Smart Contract base template to compose a complete blockchain Smart Contract. This
occurs in four steps.

Step 1: In this phase, a random secret key Sk is generated. This secret key is then
encrypted with the public key PuK of each signing party resulting in an encrypted secret
key EsK for each signer. The encrypted secret keys Esk are stored in the Smart Contract.
Only the signer using their private key PrK can decrypt the encrypted secret key Esk to
get Sk.

Step 2: As each section is added to the Smart Contract, the Manifest parameters for
that section are enumerated. The section code is designed with placeholders for each
parameter. These placeholders are replaced with the data value provided by the
Licensor during Composition. If the Manifest specifies the data value should be
encrypted, it is encrypted with Sk. The placeholder is then replaced with the encrypted

38

value. If no encryption is required, the placeholder is replaced with the plain-text value.

Step 3: A reference to the contract PDF document file hash HP is added to the Smart
Contract.

Step 4: The Smart Contract code is compiled to produce bytecode ready for deployment
to the blockchain.

Smart Contract Publishing

Smart Contract Publishing

Licensor Signed

Smart Blockchain Transaction Blockchain
C m[ar t Submit
on ra; 9 approve(“a3B4c6d8”) s .
Deploy Contract !
98a0cBbf39d8 | ———= Address Licensee Signed
Transaction
92ca99ded9b ot 92ca99de49b
&6) approve("d6F2a5ed”) "

The last step in the process is for the Smart Contract to be deployed to the blockchain.
This is done in two steps:

Step 1: The Smart Contract bytecode is published to the blockchain resulting in a
unique address.

Step 2: Once the Smart Contract is deployed, each of the signed hash transactions M
from the signing step are transmitted to the blockchain. These transactions are in effect
calling a function of the deployed Smart Contract as proof that the signing parties in
fact did sign the content hash (H).

39

Summary

A fully deployed UltraContract has the following proofs:

1) A PDF document immutably stored on decentralized storage containing signed

2)

3)

hashes of the content by each signing party and reference decentralized storage
hashes to all documents referenced in the contract.

Proof Provided: Each signing party used their secret private key to sign the
content hash proving that they were aware of the content represented by the
hash.

A Smart Contract containing encrypted and unencrypted field values for all
sections of the contract.

Proof Provided: Public, immutable proof of the contract values.

A Smart Contract containing transactions with the content hash executed by the
signing parties.

Proof Provided: Each signing party used their secret private key to sign a
transaction and submit it to the blockchain proving their knowledge of the
existence of the Smart Contract, its stored data values and their knowledge of
the content hash.

40

